Automated surface inspection for statistical textures

نویسندگان

  • Du-Ming Tsai
  • Tse-Yun Huang
چکیده

In this paper we present a global approach for the automatic inspection of defects in randomly textured surfaces which arise in sandpaper, castings, leather, and many industrial materials. The proposed method does not rely on local features of textures. It is based on a global image reconstruction scheme using the Fourier transform. Since a statistical texture has the surface of random pattern, the spread of frequency components in the power spectrum space is isotropic and forms the shape approximate to a circle. By finding an adequate radius in the spectrum space, and setting the frequency components outside the selected circle to zero, we can remove the periodic, repetitive patterns of any statistical textures using the inverse Fourier transform. In the restored image, the homogeneous region in the original image will have an approximately uniform gray level, and yet the defective region will be distinctly preserved. This converts the difficult defect detection in textured images into a simple thresholding problem in nontextured images. The experimental results from a variety of real statistical textures have shown the efficacy of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated defect inspection of light-emitting diode chips using neural network and statistical approaches

This research explores the automated visual inspection of surface blemishes that fall across two different background textures in a light-emitting diode (LED) chip. Water-drop defects, commonly found on chip surface, impair the appearance of LEDs as well as their functionality and security. Automated inspection of a water-drop defect is difficult because the blemish has a semi-opaque appearance...

متن کامل

Automatic surface inspection using wavelet reconstruction

In automatic surface inspection, one has to solve the problem of detecting small surface defects which locally break the homogeneity of a texture pattern. Textures are generally classified into two major types, structural and statistical [1]. Structural textures are those that are composed of repetitions of some basic texture primitive, such as directional lines, with a deterministic rule of di...

متن کامل

Wavelet-based Principal Component Analysis Applied to Automated Surface Defect Detection

Automated visual inspection, a crucial manufacturing step, has been replacing the more time-consuming and less accurate human inspection. This research explores automated visual inspection of surface defects in a light-emitting diode (LED) chip. Commonly found on chip surface are water-spot defects which impair the appearance and functionality of LEDs. Automated inspection of water-spot defects...

متن کامل

Automatic Detection and Localization of Surface Cracks in Continuously Cast Hot Steel Slabs Using Digital Image Analysis Techniques

Quality inspection is an indispensable part of modern industrial manufacturing. Steel as a major industry requires constant surveillance and supervision through its various stages of production. Continuous casting is a critical step in the steel manufacturing process in which molten steel is solidified into a semi-finished product called slab. Once the slab is released from the casting unit, th...

متن کامل

Principal Component Analysis Based on Wavelet Characteristics Applied to Automated Surface Defect Inspection

Automated visual inspection, a crucial manufacturing step, has been replacing the more time-consuming and less accurate human inspection. This research explores automated visual inspection of surface defects in a light-emitting diode (LED) chip. Commonly found on chip surface are water-spot blemishes which impair the appearance and functionality of LEDs. Automated inspection of water-spot defec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Image Vision Comput.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2003